Abstract
Fuel spray is the pivotal process of direct injection engine combustion. The accuracy of spray simulation determines the reliability of combustion calculation. However, the traditional techniques of spray simulation in KIVA and commercial CFD codes are very susceptible to grid resolution. As a consequence, predicted engine performance and emission can depend on the computational mesh. The two main causes of this problem are the droplet collision algorithm and coupling between gas and liquid phases. In order to improve the accuracy of spray simulation, the original KIVA code is modified using the cross mesh droplet collision (CMC) algorithm and gas phase velocity interpolation algorithm. In the constant volume apparatus and D.I. diesel engine, the improvements of the modified KIVA code in spray simulation accuracy are checked from spray structure, predicted average drop size and spray tip penetration, respectively. The results show a dramatic decrease in grid dependency. With these changes, the distorted phenomenon of spray structure is vanished. The uncertainty in predicted average drop size is reduced from 30 to 5 μm in constant volume apparatus calculation, and the uncertainty is further reduced to 2 μm in an engine simulation. The predicted spray tip penetrations in engine simulation also have better consistency in medium and fine meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.