Abstract
Aeroacoustic sensing is well motivated due to its passive nature and low bandwidth, and processing with array baselines of one to a few meters is well studied and useful. However, arrays of this size present difficulties in manufacture and deployment. Motivated by the desire to develop smaller, cheaper (perhaps disposable) sensor packages, we consider performance for arrays with small baselines. The performance of angle estimation operating roughly in the [30, 500] Hz regime is limited by the observed signal-to-noise ratio (SNR) and propagation in the turbulent atmosphere. Scattering results in a reduction of spatial coherence, which places fundamental limits on angle estimation accuracy. Physics-based statistical models for the scattering have enabled prediction of network performance including detection, angle estimation, time-delay estimation, and geolocation. In the present work, we focus on angle estimation accuracy for the short baseline case. While a large aperture is desirable to improve angle estimation, the propagation produces a rolloff in the spatial coherence that ultimately degrades the performance despite increasing the array aperture. We characterize this tradeoff analytically via Cramer-Rao bounds, as a function of SNR, frequency range, sensor array geometry, and propagation conditions. The results clearly favor shorter ranges and higher frequencies when employing small array baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.