Abstract

The division of data for training a neural network into training and test data in various proportions to each other is investigated. The question is raised about how the quality of data distribution and their correct annotation can affect the final result of constructing a neural network model. The paper investigates the algorithmic stability of training a deep neural network in problems of recognition of the microstructure of materials. The study of the stability of the learning process makes it possible to estimate the performance of a neural network model on incomplete data distorted by up to 10%. Purpose. Research of the stability of the learning process of a neural network in the classification of microstructures of functional materials. Materials and methods. Artificial neural network is the main instrument on the basis of which produced the study. Different subtypes of deep convolutional networks are used such as VGG and ResNet. Neural networks are trained using an improved backpropagation method. The studied model is the frozen state of the neural network after a certain number of learning epochs. The amount of data excluded from the study was randomly distributed for each class in five different distributions. Results. Investigated neural network learning process. Results of experiments conducted computing training with gradual decrease in the number of input data. Distortions of calculation results when changing data with a step of 2 percent are investigated. The percentage of deviation was revealed, equal to 10, at which the trained neural network model loses its stability. Conclusion. The results obtained mean that with an established quantitative or qualitative deviation in the training or test set, the results obtained by training the network can hardly be trusted. Although the results of this study are applicable to a particular case, i.e., microstructure recognition problems using ResNet-152, the authors propose a simpler technique for studying the stability of deep learning neural networks based on the analysis of a test, not a training set.

Highlights

  • Введение Известна проблема подбора обучающего и тестирующего множеств в задачах машинного обучения, к которым также относятся задачи глубокого обучения с целью предсказания физикомеханических свойств функциональных материалов [1,2,3]

  • Нет четкого ответа на вопрос: насколько ошибочно аннотированные изображения могут повлиять на результат обучения? Например, достаточно часто работу классифицирующей нейронной сети сравнивают с работой человека

  • The paper investigates the algorithmic stability of training a deep neural network in problems of recognition of the microstructure of materials

Read more

Summary

Краткие сообщения

Исследуется разделение данных для обучения нейронной сети на обучающие и тестовые в различных пропорциях друг к другу. В работе исследуется алгоритмическая устойчивость обучения глубокой нейронной сети в задачах распознавания микроструктуры материалов. Исследование устойчивости процесса обучения нейронной сети при классификации микроструктур функциональных материалов. Полученные результаты означают, что при установленном количественном или качественном отклонении в обучающем или тестовом множествах результатам, которые получаются с помощью обучения сети, вряд ли можно доверять. Е. задачи распознавания микроструктуры с помощью ResNet-152, авторы предлагают более простую методику исследования устойчивости нейросетей глубокого обучения на основе анализа тестового, а не обучающего множества. К недостаткам данной работы можно отнести то, что зависимость точности обучения от объема обучающей выборки рассчитывалась на основании 6 численных экспериментов (по каждому из классов), а само тестирующее множество получалось в результате процедуры разделения обучающего множества в пропорции 75/25. В табл. 1 показаны результаты обучения, выполненные по разным оценкам, на обучающем и валидационном множествах

Точность на валидационном множестве
Номер класса
ОБРАЗЕЦ ЦИТИРОВАНИЯ
Findings
FOR CITATION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call