Abstract
Abstract We study the effect of restricting the number of individual variables, as well as the number and arity of predicate letters, in languages of first-order predicate modal logics of finite Kripke frames on the logics’ algorithmic properties. A finite frame is a frame with a finite set of possible worlds. The languages we consider have no constants, function symbols or the equality symbol. We show that most predicate modal logics of natural classes of finite Kripke frames are not recursively enumerable—more precisely, $\varPi ^0_1$-hard—in languages with three individual variables and a single monadic predicate letter. This applies to the logics of finite frames of the predicate extensions of the sublogics of propositional modal logics $\textbf{GL}$, $\textbf{Grz}$ and $\textbf{KTB}$—among them, $\textbf{K}$, $\textbf{T}$, $\textbf{D}$, $\textbf{KB}$, $\textbf{K4}$ and $\textbf{S4}$.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have