Abstract

<span>Reviews of e-commerce play an important role in online purchasing decisions. Consumers are likely to read reviews and comments on products from other consumers. In addition to those opinions that reflect consumers' trust in products, it also provides each product's distinctive properties. Today, there are many online reviews, resulting in enormous comments and suggestions. However, as fully reading reviews is quite difficult, this article presents 3 algorithms for automatic extraction of product features hidden in e-commerce reviews: a traditional frequency-based product feature extraction (F-PFE), syntax analyzer system (SAS), and the hybrid approach called the frequency and syntax-based product feature extraction (FaS-PFE). The proposed algorithms were tested against 4 different types of products: shampoo, skincare, mobile phone, and tablet, using reviews from amazon.com. Based on the product review used in this study, it was found that the SAS can help improve the performance in terms of precision by 15% when compared with the traditional F-PEE approach. When considering both the word frequency and syntax, FaS-PFE clearly outperforms the other two approaches with 94.00% precision and 95.13% recall.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.