Abstract

Alginate hydrogel culture has been shown to reestablish chondrocytic phenotype following monolayer expansion; however, previous studies have not adequately addressed how culture conditions affect the signaling systems responsible for chondrocyte metabolic activity. Here we investigate whether chondrocyte culture history influences the insulin-like growth factor-I (IGF-I) signaling system and its regulation by interleukin-1 (IL-1). Articular chondrocytes (ACs) from equine stifle joints were expanded by serial passage and were either encapsulated in alginate beads or maintained in monolayer culture for 10 days. Alginate-derived cells (ADCs) and monolayer-derived cells (MDCs) were then plated at high density, stimulated with IL-1beta (1 and 10 ng/mL) or IGF-I (50 ng/mL) for 48 h, and assayed for levels of type I IGF receptor (IGF-IR), IGF binding proteins (IGFBPs), and endogenously secreted IGF-I. Intermediate alginate culture yielded relatively low IGF-IR levels that increased in response to IL-1beta, whereas higher receptor levels on MDCs were reduced by cytokine. MDCs also secreted substantially more IGFBP-2, the predominant binding protein in conditioned media (CM), though IL-1beta suppressed levels for both cell populations. Concentrations of autocrine/paracrine IGF-I paralleled IGFBP-2 secretion. Disparate basal levels of IGF-IR and IGFBP-2, but not IGF-I, were attributed to relative transcript expression. Systemic differences coincided with varied effects of IL-1beta and IGF-I on cell growth and type I collagen expression. We conclude that culture strategy impacts the IGF-I signaling system of ACs, potentially altering their capacity to mediate cartilage repair. Consideration of hormonal regulators may be an essential element to improve chondrocyte culture protocols used in tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.