Abstract

Abstract The present study aimed at developing novel encapsulate materials of calcium-alginate and β-lactoglobulin complex for polyphenols using the jet-flow nozzle vibration method. Encapsulated microbeads were characterized using SEM, FTIR, DSC, and MSI. The encapsulation efficiency of the microbeads varied depending upon the coating material in the range of 74.17–84.87%. Calcium-alginate-β-lactoglobulin microbeads (CABM) exhibited a smooth surface and uniform shape with an average particle size of 1053.73 nm. CABM also showed better thermal and storage stabilities as compared to calcium alginate microbeads. The CABM resulted in excellent target release of polyphenols (84%) in the intestine, which was more than 3-fold the bio-accessibility offered by free polyphenol powder. Further study on individual phenolic acids after simulated in-vitro digestion (SIVD), photo-oxidative and osmotic stress revealed that CABM significantly retained a higher amount of polyphenols and exhibited improved antioxidant capacity after SIVD environment, and may have high industrial application for nutraceutical production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call