Abstract

In this study, the effects of soy protein isolate (SPI) on the morphology, encapsulation efficiency, storage stability, swelling behavior, and in vitro digestion behavior of calcium alginate (CA) microgels were investigated. CA and calcium alginate-SPI (CAS) microgels with encapsulated β-carotene were prepared by extruding a mixture of alginate and SPI using a co-extrusion technique, followed by cross-linking with Ca2+. All microgels exhibited homogeneous sizes and spherical shapes, and CAS microgels showed high levels of protein loading efficiency. The encapsulation efficiency and storage stability of β-carotene within CAS microgels were higher than those within CA microgels. The introduction of SPI into CAS microgels resulted in a higher degree of gel size shrinkage in gastric fluid and a lower degree of swelling in intestinal fluid compared to CA microgels. In vitro digestion was conducted to investigate the effects of the addition of SPI on the release behavior of CA and CAS microgels. Results obtained showed that CAS microgels were more resistant to simulated gastric fluid than CA microgels. Cryo-scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) observations indicated that the release behavior was dependent on the porosity of the CA and CAS microgels, and the porosity was influenced by the concentration of SPI. This study showed that the introduction of SPI to CA microgels can lead to the development of an effective controlled release delivery system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call