Abstract
Mucoid strains of Pseudomonas aeruginosa overproduce the exopolysaccharide alginate, which is substituted with O-acetyl groups. Under non-growing conditions in phosphate buffer, a mucoid clinical strain formed microcolonies on steel surfaces, while an acetylation-defective mutant was unable to form cell clusters. Enzymatic degradation of alginate by alginate lyase prevented microcolony formation of the mucoid parent strain. In a continuous-culture flow-cell system, using gluconate minimal medium, the mucoid strain with acetylated alginate formed microcolonies and grew into heterogenous biofilms, whereas the acetylation-defective mutant produced a thinner and more homogeneous biofilm. A lowered viscosity of extracellular material from the acetylation-defective mutant indicated a weakening of exopolymer interactions by loss of acetyl groups. These results suggest that acetyl substituents are necessary for the function of high-molecular-mass alginate to mediate cell aggregation into microcolonies in the early stages of biofilm development by mucoid P. aeruginosa, thereby determining the architecture of the mature biofilm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have