Abstract

This paper is devoted to the construction of Algebraic Multi-Grid (AMG) methods, which are especially suited for the solution of large sparse systems of algebraic equations arising from the finite element discretization of second-order elliptic boundary value problems on unstructured, fine meshes in two or three dimensions. The only information needed is recovered from the stiffness matrix. We present two types of coarsening algorithms based on the graph of the stiffness matrix. In some special cases of nested mesh refinement, we observe, that some geometrical version of the multi-grid method turns out to be a special case of our AMG algorithms. Finally, we apply our algorithms on two and three dimensional heat conduction problems in domains with complicated geometry (e.g. micro-scales), as well as to plane strain elasticity problems with jumping coefficients.KeywordsCoarse GridMultigrid MethodCoarse Grid CorrectionLarge Sparse SystemCoarse Grid SpaceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.