Abstract

In this paper, we consider the Toda lattice associated to the twisted affine Lie algebra \(\mathfrak{d}_3^{(2)}\). We show that the generic fiber of the momentum map of this system is an affine part of an Abelian surface and that the flows of integrable vector fields are linear on this surface, so that the system is algebraic completely integrable. We also give a detailed geometric description of these Abelian surfaces and of the divisor at infinity. As an application, we show that the lattice is related to the Mumford system and we construct an explicit morphism between these systems, leading to a new Poisson structure for the Mumford system. Finally, we give a new Lax equation with spectral parameter for this Toda lattice and we construct an explicit linearization of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.