Abstract

Recently, algebraic attacks have received a lot of attention in the cryptographic literature. It has been observed that a Boolean function f used as a cryptographic primitive, and interpreted as a multivariate polynomial over F/sub 2/, should not have low degree multiples obtained by multiplication with low degree nonzero functions. In this paper, we show that a Boolean function having low nonlinearity is (also) weak against algebraic attacks, and we extend this result to higher order nonlinearities. Next, we present enumeration results on linearly independent annihilators. We also study certain classes of highly nonlinear resilient Boolean functions for their algebraic immunity. We identify that functions having low-degree subfunctions are weak in terms of algebraic immunity, and we analyze some existing constructions from this viewpoint. Further, we present a construction method to generate Boolean functions on n variables with highest possible algebraic immunity /spl lceil/n/2/spl rceil/ (this construction, first presented at the 2005 Workshop on Fast Software Encryption (FSE 2005), has been the first one producing such functions). These functions are obtained through a doubly indexed recursive relation. We calculate their Hamming weights and deduce their nonlinearities; we show that they have very high algebraic degrees. We express them as the sums of two functions which can be obtained from simple symmetric functions by a transformation which can be implemented with an algorithm whose complexity is linear in the number of variables. We deduce a very fast way of computing the output to these functions, given their input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.