Abstract
In [10] (C R Acad Sci Paris Ser I Math 323(2) 117–120, 1996), [11] (Math Res Lett 10(1):71–83 2003), [12] (Can J Math 57(6):1215–1223 2005), Khare showed that any strictly compatible systems of semisimple abelian mod p Galois representations of a number field arises from a unique finite set of algebraic Hecke characters. In this article, we consider a similar problem for arbitrary global fields. We give a definition of Hecke character which in the function field setting is more general than previous definitions by Goss and Gross and define a corresponding notion of compatible system of mod p Galois representations. In this context we present a unified proof of the analog of Khare’s result for arbitrary global fields. In a sequel we shall apply this result to strictly compatible systems arising from Drinfeld modular forms, and thereby attach Hecke characters to cuspidal Drinfeld Hecke eigenforms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have