Abstract

We present an accurate investigation of the algebraic conditions that the symbols of a non-singular, univariate, binary, non-stationary subdivision scheme should fulfill in order to reproduce spaces of exponential polynomials. A subdivision scheme is said to possess the property of reproducing exponential polynomials if, for any initial data uniformly sampled from some exponential polynomial function, the scheme yields the same function in the limit. The importance of this property is due to the fact that several curves obtained by combinations of exponential polynomials (such as conic sections, spirals or special trigonometric and hyperbolic functions) are considered of interest in geometric modeling. Since the space of exponential polynomials trivially includes standard polynomials, this work extends the theory on polynomial reproduction to the non-stationary context. A significant application of the derived algebraic conditions on the subdivision symbols is the construction of new non-stationary subdivision schemes with specific reproduction properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.