Abstract
Subspace clustering is an important problem in machine learning with many applications in computer vision and pattern recognition. Prior work has studied this problem using algebraic, iterative, statistical, low-rank and sparse representation techniques. While these methods have been applied to both linear and affine subspaces, theoretical results have only been established in the case of linear subspaces. For example, algebraic subspace clustering (ASC) is guaranteed to provide the correct clustering when the data points are in general position and the union of subspaces is transversal. In this paper we study in a rigorous fashion the properties of ASC in the case of affine subspaces. Using notions from algebraic geometry, we prove that the homogenization trick , which embeds points in a union of affine subspaces into points in a union of linear subspaces, preserves the general position of the points and the transversality of the union of subspaces in the embedded space, thus establishing the correctness of ASC for affine subspaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.