Abstract
Subspace clustering has important and wide applications in computer vision and pattern recognition. It is a challenging task to learn low-dimensional subspace structures due to the possible errors (e.g., noise and corruptions) existing in high-dimensional data. Recent subspace clustering methods usually assume a sparse representation of corrupted errors and correct the errors iteratively. However large corruptions in real-world applications can not be well addressed by these methods. A novel optimization model for robust subspace clustering is proposed in this paper. The objective function of our model mainly includes two parts. The first part aims to achieve a sparse representation of each high-dimensional data point with other data points. The second part aims to maximize the correntropy between a given data point and its low-dimensional representation with other points. Correntropy is a robust measure so that the influence of large corruptions on subspace clustering can be greatly suppressed. An extension of our method with explicit introduction of representation error terms into the model is also proposed. Half-quadratic minimization is provided as an efficient solution to the proposed robust subspace clustering formulations. Experimental results on Hopkins 155 dataset and Extended Yale Database B demonstrate that our method outperforms state-of-the-art subspace clustering methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.