Abstract

It is shown that the Dirac equation with the Coulomb potential can be solved using the algebra of the three spinor invariants of the Dirac equation without the involvement of the methods of supersymmetric quantum mechanics. The Dirac Hamiltonian is invariant with respect to the rotation transformation, which indicates the dynamical (hidden) symmetry SU(2) of the Dirac equation. The total symmetry of the Dirac equation is the symmetry SO(3)⊗SU(2). The generator of the SO(3) symmetry group is given by the total momentum operator, and the generator of SU(2) group is given by the rotation of the vector-states in the spinor space, determined by the Dirac, Johnson–Lippmann, and the new spinor invariants. It is shown that using algebraic approach to the Dirac problem allows one to calculate the eigenstates and eigenenergies of the relativistic hydrogen atom and reveals the fundamental role of the principal quantum number as an independent number, even though it is represented as the combination of other quantum numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.