Abstract
A unitary operator on the space of spinors that makes it possible to associate each transformation in this space with a transformation in the space of electromagnetic field strengths is found. A connection is established by means of this operator between representations in the space of spinors and the space of field strengths for the Lorentsz, Poincare, and conformal groups. Unusual symmetries of the Dirac equation are found on this basis. It is noted that the Pauli—Gursey symmetry operators (without the γ5 operator) of the Dirac equation withm=0 form the same representation D(1/2, 0)⊕D(0, 1/2) of the O(1, 3) algebra of the Lorentz group as the spin matrices of the standard spinor representation. It is shown that besides the standard (spinor) representation of the Poincare group, the massless Dirac equation is invariant with respect to two other representations of this group, namely, the vector and tensor representations specified by the generators of the representations D(1/2, 1/2) and D(1, 0) ⊕D(0, 0) of the Lorentz group, respectively. Unusual families of representations of the conformal algebra associated with these representations of the group O(1, 3) are investigated. Analogous O(1, 2) and P(1, 2) invariance algebras are established for the Dirac equation withm>0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.