Abstract

This study evaluates the use of engineered biochar as a heterogeneous solid acid catalyst for transesterification of algal oil derived from a native microalgal consortium. Biochar derived from sugarcane bagasse, coconut shell, corncob and peanut shell were evaluated for catalytic activity following surface modification. Peanut shell pyrolyzed at 400 °C with the sulfonic acid density of 0.837 mmol/g having 6.616 m2/g surface area was selected for efficient catalysis. The efficiency of transesterification was evaluated with 1–7 wt% catalyst loading, methanol: oil ratio of 6:1 to 30:1 at 55–85 °C over 2–8 h. Biodiesel yield of 94.91% was obtained with 5 wt% catalyst loading, MeOH: oil ratio of 20:1 at 65 °C after 4 h. Spectral analysis of algal biodiesel showed the presence of functional groups corresponding to esters. GC–MS analysis revealed the prominent presence of palmitic and oleic acids, further advocating the suitability of the technology for commercial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.