Abstract

BackgroundOsteogenesis imperfecta (OI) is a genetic disorder of connective tissue caused by mutations associated with type I collagen, which results in defective extracellular matrix in temporomandibular joint (TMJ) cartilage and subchondral bone. TMJ is a fibrocartilaginous joint expressing type I collagen both in the cartilage and the subchondral bone. In the present study the effects of alendronate and altered loading of the TMJ was analyzed both in male and female OI mice.Materials and methodsForty-eight, 10-weeks-old male and female OI mice were divided into 3 groups: (1) Control group: unloaded group, (2) Saline + Loaded: Saline was injected for 2 weeks and then TMJ of mice was loaded for 5 days, (3) alendronate + loaded: alendronate was injected for 2 weeks and then TMJ of mice was loaded for 5 days. Mice in all the groups were euthanized 24-h after the final loading.ResultsAlendronate pretreatment led to significant increase in bone volume and tissue density. Histomorphometrically, alendronate treatment led to increase in mineralization, cartilage thickness and proteoglycan distribution. Increased mineralization paralleled decreased osteoclastic activity. Our immunohistochemistry revealed decreased expression of matrix metallopeptidase 13 and ADAM metallopeptidase with thrombospondin type 1 motif 5.ConclusionThe findings of this research support that alendronate prevented the detrimental effects of loading on the extracellular matrix of the TMJ cartilage and subchondral bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.