Abstract

The intestinal epithelium is one of the fastest renewing tissues in mammals and is a barrier against toxic substances such as alcohol. Excessive alcohol can induce intestinal damage leading to intestinal bowel diseases. Thus, the control of small intestinal epithelial cell (IEC) regeneration is thought to be important for homeostasis in response to epithelium damage. However, reports on how epithelial cells respond to small intestinal damage are scarce. We investigated the effects of alcohol consumption on small intestinal epithelial cells of mice. To verify that alcohol altered the small intestinal epithelium, we used 8–10 weeks old male C57BL/6J mice for models of chronic and binge alcohol consumption (the NIAAA model) in addition to an organoid model. Alcohol promoted the proliferative activity of IECs and intestinal stem cells (ISCs) in intestinal crypts. Alcohol consumption increased expression of the proliferation marker cyclin D1 and activated the p44/42 MAPK (Erk1/2) signaling pathway in small intestinal epithelial cells. The Wnt target genes were markedly increased in IECs from alcohol-treated mice. In the small intestinal organoid model exposed to alcohol, the organoid area and numbers of buds increased with alcohol concentrations up to 0.5% similar to in vivo observations. These results suggest that alcohol consumption stimulates the proliferation of small intestinal epithelial cells via Wnt signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call