Abstract
In this study, folate polyethylene glycol CTr albumin nanoparticles (FA-PEG-CTr-NPs) targeting hepatocellular carcinoma (HCC) were prepared. The nanoparticle preparation method was optimized using single-factor and response surface analysis. The prepared nanoparticles were characterized for their particle size, zeta potential, and morphology. The particle size and zeta potential were also determined. Additionally, drug loading, encapsulation efficiency, and in vitro drug release of the nanoparticles were determined. Using the Cell Counting Kit-8 method, their cytotoxicity and their cell-targeted uptake were determined using confocal microscopy and flow cytometry. Finally, the in vivo antitumor impact and tumor-targeting ability of the nanoparticles were evaluated by determining tumor volume inhibition and drug biodistribution and performing hematoxylin-eosin (H&E) staining. It was found that CTr could be effectively encapsulated into albumin nanoparticles and functionalized. The drug loading of the two nanoparticles was 67.12 ± 2.4% and 69.33 ± 2.8%, respectively. Regarding drug release, FA-PEG-CTr-NPs (89.0%) exhibited a superior release rate to CTr-NPs (70.5%) in an acidic environment. The in vitro experiments confirmed that FA-PEG-CTr-NPs yielded better cytotoxicity and faster drug uptake results than CTr and CTr-NPs. In vivo experiments confirmed that FA-PEG-CTr-NPs exhibited markedly better tumor inhibitory activity (inhibition rate was 80.21%), drug safety, and targeting than CTr and CTr-NPs. In conclusion, functionalized nanoparticles (FA-PEG-CTr-NPs) can specifically inhibit the malignant proliferation of HCC cells and are thus a promising nanoagent for the treatment of HCC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have