Abstract

Alanine aminotransferase (ALT), a type of inactive enzyme largely present in fish liver cells, is essential for the tricarboxylic acid (TCA) cycle. Monitoring ALT activity in the blood/hepatocellular layer has been demonstrated to be a sensitive sign of liver dysfunction and an essential method for determining the health status of fish. This study details the development of a multi-layer material (hybrids of graphene oxide and multi-walled carbon nanotubes (GO/MWCNTs), gold nanoparticles (AuNPs), and glutamate oxidase (GluOx) enzyme) immobilized localized surface plasmon resonance based unique fiber structure biosensor for the quantitative determination of ALT biomolecules at concentrations ranging from 0 to 1000 U/L. For this kind of detection, a novel taper-in-taper with four tapered (TIT4T) structure based on single-mode fiber has been developed. In addition to AuNPs, GO/MWCNTs were immobilized in the probe's sensing region to increase its LSPR efficiency and sensitivity. Synthesis of AuNPs was carried out utilizing the Turkevich method. The selectivity of the sensor is ensured by the effective immobilization of GluOx on the surface treatment. The linearity of sensor is in the range of 0–1000 U/L, whereas the sensitivity, limit of detection, and detection time are individually found at 7.5 p.m./(U/L), 4.84 U/L and 20 min, respectively. After evaluating the prospective applications of the sensors, the sensors' reusability, reproducibility, stability, pH test, and selectivity have all been found to be satisfactory. Proposed fiber optic biosensors have high sensitivity, robustness, reliability, fast detection, no electromagnetic interference, low cost, real-time monitoring, and biocompatible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.