Abstract

Al0.25Ga0.75N/GaN enhancement-mode (E-mode) metal–oxide–semiconductor high-electron-mobility transistors (MOS-HEMTs) obtained by the ozone water oxidization method are investigated in this work. Decreased gate leakage and reduced channel depletion are obtained by forming the Al2O3 dielectric layer of the MOS gate structure by a cost-effective oxidization method. Pulse current–voltage (I–V), low-frequency noise, and Hooge coefficient measurements are compared to verify the interface quality improved by the oxide passivation effect. In comparison, a conventional Schottky-gate HEMT device is also fabricated on the same epitaxial sample. Enhanced device gain, current drive density, breakdown, on/off current ratio, and high-temperature stability up to 450 K are also investigated in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.