Abstract

AbstractUltrawide bandgap (UWBG) semiconductors offer new possibilities to develop power electronics. High voltage operation for the off‐state as well as high temperature stability of the devices in on‐state are required. More than AlGaN/GaN heterostructures, AlGaN/AlGaN heterostructures are promising candidates to meet these criteria. Furthermore, the possibility to choose the Al molar fraction of AlGaN paves the way to more tunable heterostructures. In this study, the electronic transport properties of AlGaN channel heterostructures grown on silicon substrates with various aluminum contents, focusing on the temperature dependence of the electron mobility, is investigated. Experimental results from Hall effect measurements are confronted with carrier scattering models and deep level transient spectroscopy analysis to quantify limiting effects. These results demonstrated the significant potential of Al‐rich AlGaN channel heterostructures grown on silicon substrates for high power and high temperature applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.