Abstract

Selective deoxygenation of chemicals using non-noble metal-based catalysts poses a significant challenge toward upgrading biomass-derived oxygenates into advanced fuels and fine chemicals. Herein, we report a bifunctional core-shell catalyst (Ni@Al3-mSiO2) consisting of Ni nanoparticles closely encapsulated by the Al-doped mesoporous silica shell that achieves 100% vanillin conversion and >99% yield of 2-methoxy-4-methylphenol under 1 MPa H2 at 130 °C in water. Due to the unique mesoporous core-shell structure, no significant decrease in catalytic activity was observed after 10 recycles. Furthermore, incorporating Al atoms into the silica shell significantly increased the number of acidic sites. Density functional theory calculations reveal the reaction pathway of the vanillin hydrodeoxygenation process and uncover the intrinsic influence of the Al sites. This work not only provides an efficient and cost-effective bifunctional hydrodeoxygenation catalyst but also offers a new synthetic protocol to rationally design promising non-noble metal catalysts for biomass valorization or other widespread applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.