Abstract

Well crystallised aluminium borate Al 18B 4O 33 has been synthesised from alumina and boric acid with a BET area of 18 m 2/g after calcination at 1100 °C. Afterwards, 2 wt.% Pd/Al 18B 4O 33 was prepared by conventional impregnation of Pd(NO 3) 2 aqueous solution and calcination in air at 500 °C. The catalytic activity of Pd/Al 18B 4O 33 in the complete oxidation of methane was measured between 300 and 900 °C and compared with that of Pd/Al 2O 3. Pd/Al 18B 4O 33 exhibited a much lower activity than Pd/Al 2O 3 when treated in hydrogen at 500 °C or aged in O 2/H 2O (90:10) at 800 °C prior to catalytic testing. Surprisingly, a catalytic reaction run up to 900 °C in the reaction mixture induced a steep increase of the catalytic activity of Pd/Al 18B 4O 33 which became as active as Pd/Al 2O 3. Moreover, the decrease of the catalytic activity observed around 750 °C for Pd/Al 2O 3 and attributed to PdO decomposition into metallic Pd was significantly shifted to higher temperatures (820 °C) in the case of Pd/Al 18B 4O 33. The existence of two distinct types of PdO species formed on Al 18B 4O 33 and being, respectively, responsible for the improvement of the activity at low and high temperature was proposed on the basis of diffuse reflectance spectroscopy and temperature-programmed desorption of O 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call