Abstract

Workpieces resulting from 3D printing manufacturing which were initially only for rapid prototyping purposes, are now used for final products. In its development, a method is needed that can accommodate the creation of multi-material structures because there are complex structures that require hard materials and elastic materials in one part at once. Multi-material manufacturing with a laminate structure in DLP 3D printing can be done by changing the resin material periodically as needed. One important aspect in multi-material 3D printing manufacturing is dimensional accuracy. In this research, the accuracy of multi-material specimen layer thickness from DLP 3D printer manufacturing was studied. The specimens were manufactured with a uniform CAD design, but with varying numbers of material layer pairs. The thickness of each layer of the specimen is measured. From the measurement results, it is known that there is an error in the thickness of each specimen due to the bottom layer phenomenon and the influence of the penetration range of UV light in the DLP 3D printing technique due to differences in the color density of the resin material and the concentration of the photoinitiator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.