Abstract

Dispersion varying fibres have applications in optical pulse compression techniques. We investigate Akhmediev breathers, Kuznetsov–Ma (KM) solitons and optical rogue waves in a dispersion varying optical fibre based on a variable-coefficient nonlinear Schrödinger equation. Analytical solutions in the forms of Akhmediev breathers, KM solitons and rogue waves up to the second order of that equation are obtained via the generalised Darboux transformation and integrable constraint. The properties of Akhmediev breathers, KM solitons and rogue waves in a dispersion varying optical fibre, e.g. dispersion decreasing fibre (DDF) or a periodically distributed system (PDS), are discussed: in a DDF we observe the compression behaviours of KM solitons and rogue waves on a monotonically increasing background. The amplitude of each peak of the KM soliton increases, while the width of each peak of the KM soliton gradually decreases along the propagation distance; in a PDS, the amplitude of each peak of the KM soliton varies periodically along the propagation distance on a periodic background. Different from the KM soliton, the Akhmediev breather and rogue waves repeat their behaviours along the propagation distance without the compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call