Abstract

In order for autonomous surface vessels (ASVs) to avoid collisions at sea it is necessary to predict the future trajectories of surrounding vessels. This paper investigate the use of historical automatic identification system (AIS) data to predict such trajectories. The availability of AIS data have steadily increased in the last years as a result of more regulations, together with wider coverage through AIS integration on satellites and more land based receivers. Several AIS-based methods for predicting vessel trajectories already exist. However, these prediction techniques tend to focus on time horizons in the level of hours. The prediction time of our interest typically ranges from a few minutes up to about 15 minutes, depending on the maneuverability of the ASV. This paper presents a novel datadriven approach which recursively use historical AIS data in the neighborhood of a predicted position to predict next position and time. Three course and speed prediction methods are compared for one time step predictions. Lastly, the algorithm is briefly tested for multiple time steps in curved environments and shows good potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call