Abstract
Recently, the Vessel Traffic Service (VTS) coverage has expanded to include coastal areas following the increased attention on vessel traffic safety. However, it has increased the workload on the VTS operators. In some cases, when the traffic volume increases sharply during the rush hour, the VTS operator may not be aware of the risks. Therefore, in this paper, we proposed a new method to recognize ship movement anomalies automatically to support the VTS operator’s decision-making. The proposed method generated traffic pattern model without any category information using the unsupervised learning algorithm.. The anomaly score can be calculated by classification and comparison of the trained model. Finally, we reviewed the experimental results using a ship-handling simulator and the actual trajectory data to verify the feasibility of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have