Abstract
Recent developments on heteroarene-based organic semiconductors applicable to high-performance, air-stable thin-film p-channel transistors are described. For the development of these new materials, including benzo[1,2-b:4,5-b']dichalcogenophenes (BDXs), [1]benzochalcogenopheno[3,2-b][1]benzochalcogenophenes (BXBXs), and dinaphtho[2,3-b:2',3'-f]chalcogenopheno[3,2-b]chalcogenophenes (DNXXs), new efficient synthetic methods are established. These materials are then evaluated as active layers in organic field-effect transistors (OFETs) fabricated by vacuum or solution processes. In the present work, molecular factors (molecular structures, energy levels and shapes of highest occupied molecular orbitals, molecular arrangements in the thin film) and the device performances are correlated and discussed to understand a structure-properties relationship. As a consequence of this approach, several air-stable and high-performance semiconductors for the OTFTs are successfully developed. For example, vapor-processable DNTT and solution-processable alkylated-BTBTs showing field-effect mobility as high as 3.0 cm V s and with 2.8 cm V s, respectively, are among the best for recently developed new materials. CONTENTS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.