Abstract
Abstract In order to gain an insight into the relationship between the molecular structure and the semiconductor characteristics of highly π-extended heteroarene-based organic semiconductors, three structural isomers of dinaphthothieno[3,2-b]thiophenes with C2h symmetry were investigated. Of these, two isomers, dinaphtho[2,1-b:2′,1′-f ]thieno[3,2-b]thiophene (2) and dinaphtho[1,2-b:1′,2′-f ]thieno[3,2-b]thiophene (3), were newly synthesized, characterized, and utilized as active semiconducting layers in organic field-effect transistors (FETs). Detailed investigation of the physicochemical properties of 2 and 3, together with another isomer, dinaphtho[2,3-b:2′,3′-f ]thieno[3,2-b]thiophene (1), indicated that the electronic structures of the three isomers are fairly different from each other despite having the same molecular formula and the same aromatic constituents. Comparison of the molecular arrangements in the crystals elucidated by X-ray structural analysis implied that the molecular shape and the thus-induced favorable intermolecular interactions play important roles in determining the entire molecular arrangement. The characteristics of 2- and 3-based FETs with maximum field-effect mobilities (μFET s) of 10−3–10−2 cm2 V−1 s−1 were inferior to those of 1-based FETs with μFET s up to 3.0 cm2 V−1 s−1. The inferior characteristics of 2- and 3-based devices were due to film morphology as elucidated by atomic force microscopy (AFM) and supported by theoretical calculations of electronic structure in the solid state. Together, the results indicate that the molecular structure and shape, even for similar heteroarenes with the same molecular formula and symmetry, are important parameters to determine the solid-state properties of organic semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.