Abstract

This letter proposes a method using convolutional neural networks (CNNs) for airport detection on optical satellite images. To efficiently build a deep CNN with limited satellite image samples, a transfer learning approach had been employed by sharing the common image features of the natural images. To decrease the computing cost, an efficient region proposal method had been proposed based on the prior knowledge of the line segments distribution in an airport. The transfer learning ability on deep CNN for airport detection on satellite images had been first evaluated in this letter. The proposed method was tested on an image data set, including 170 different airports and 30 nonairports. The detection rate could reach 88.8% in experiments with seconds’ computation time, which showed a great improvement over other the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.