Abstract

Recognizing that allowing variability in scheduled flight departure times can result in improved flight connection opportunities and a more cost effective fleet assignment, we present a generalized fleet assignment model for simultaneously assigning aircraft types to flights and scheduling flight departures. Our model, a simple variant of basic fleet assignment models, assigns a time window to each flight and then discretizes each window, allowing flight departure times to be optimized. Because problem size can become formidable, much larger than basic fleet assignment models, we develop two algorithmic approaches for solving the model. Our direct solution approach is good for speed and simplicity, whereas our iterative technique minimizes memory usage. Using data from a major U.S. airline, we show that our model can solve real, large-scale problems, and we evaluate the effects of schedule flexibility. In every test scenario, the model produces a fleet assignment with significantly lower costs than the basic model, and, in a separate analysis, the model is used to tighten the schedule, potentially saving aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.