Abstract

The aim of this work is to implement an innovative parameterization and fitting procedure for the definition of a mathematical model useful to describe a wide range of airfoils. They are partitioned into three sections: central box, leading edge, and trailing edge. Each section is mathematically represented by two opposed, uniform, non-rational B-spline curves, describing the upper and lower airfoil segments’ perimeter. A novel approach is used to ensure both the desired continuity between two adjacent segments (up to 2nd derivatives) and sufficient model versatility and flexibility while managing a limited number of parameters, defining tangent and curvature vectors as scale factor variables. These parameters allow for a variable separation approach during the geometric fitting procedure that can be carried out considering two nested optimization processes, one based on a genetic algorithm and the other on a numerical gradient evaluation of the objective function. The representation method has been verified against different airfoils, comparing the geometric and aerodynamic properties of the input and model-based generated profile. To show the mathematical model’s capabilities and possible applications, a comparison between existing and proposed airfoil approximation methods has been provided together with examples of “global” and “local” morphing and CFD analyses of the resulting airfoils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.