Abstract

Aerodynamic/stealth design is becoming an important factor in the advanced airfoil design. In this work, a supervised machine learning method is proposed for aerodynamic and stealth integrated airfoil design. The conditional generative adversarial network (CGAN) is constructed for the multidisciplinary design of airfoil. Then, the generator and discriminator simply using deep neural network have good robustness and stability in training. The CGAN model also shows good generalization capability in the test set, with less than 1% error in fitting to the airfoil profile data, and the generated airfoils are within 10% error compared to the test airfoil aerodynamic stealth characteristics. In addition, the optimization results based on the CGAN model demonstrate that aerodynamic performance improvement would increase the airfoil camber and stealth performance improvement would sharpen the airfoil leading edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.