Abstract
Context. Aircraft detection is an essential task in the military, as fast and accurate aircraft identification allows for timely response to potential threats, effective airspace control, and national security. The use of deep neural networks improves the accuracy of aircraft recognition, which is essential for modern defense and airspace monitoring needs. Objective. The work aims to improve the accuracy of aircraft recognition in high-resolution optical satellite imagery by using deep neural networks and a method of sequential boundary traversal to detect object contours. Method. A method for improving the accuracy of aircraft detection on high-resolution satellite images is proposed. The first stage involves collecting data from the HRPlanesv2 dataset containing high-precision satellite images with aircraft annotations. The second stage consists of preprocessing the images using a sequential boundary detection method to detect object contours. In the third stage, training data is created by integrating the obtained contours with the original HRPlanesv2 images. In the fourth stage, the YOLOv8m object detection model is trained separately on the original HRPlanesv2 dataset and the dataset with the applied preprocessing, which allows the evaluation of the impact of additional processed features on the model performance. Results. Software that implements the proposed method was developed. Testing was conducted on the primary data before preprocessing and the data after its application. The results confirmed the superiority of the proposed method over classical approaches, providing higher aircraft recognition accuracy. The mAP50 index reached 0.994, and the mAP50-95 index reached 0.864, 1% and 4.8% higher than the standard approach. Conclusions. The experiments confirm the effectiveness of the proposed method of aircraft detection using deep neural networks and the process of sequential boundary traversal to detect object contours. The results indicate this approach’s high accuracy and efficiency, which allows us to recommend it for use in research related to aircraft recognition in high-resolution images. Further research could focus on improving image preprocessing methods and developing object recognition technologies in machine learning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have