Abstract
Traditionally airborne time-domain electromagnetic (AEM) survey systems use induction coils as the sensor (receiver). We have replaced the induction coil in a transient electromagnetic (TEM) system with a liquid-nitrogen cooled superconducting quantum interference device (SQUID) magnetometer sensor. Using this prototype system, we aimed to improve performance in detecting conductive mineralization, particularly where the conductive mineralization of interest is covered by a conductive regolith. We successfully demonstrated one- and three-component SQUID sensors in airborne TEM surveying, and achieved performance comparable to the induction-coil systems. Implementation of the SQUID system required development of devices capable of operating in magnetically unshielded environments with low noise, high slew rate, and wide bandwidth. Operation of the SQUID sensor in the highly dynamic environment of a towed bird was also necessary, and this implies a high dynamic range and high level of noise associated with the motion in Earth's magnetic field. The high dynamic range of the SQUID response was handled by a combination of resetting the SQUID flux locked loop, reducing the bandwidth, and providing high-gain feedback in parallel with the flux locked loop. A digital stacking filter was used to eliminate low-frequency noise associated with sensor motion. Isolation of the sensor from motion at the TEM signal frequencies required development of a sophisticated suspension system. The SQUID systems were tested over two known conductive targets, and their performance compared with the induction-coil TEM system. A comparative performance measure is developed to take the different sensitivities of the SQUID magnetometer and induction-coil receivers into account. This measure indicates that the SQUID system has superior performance for responses over earth structures with decay time constants greater than ∼6 ms when compared with the induction-coil signals. We also estimate the performance in comparison with integrated outputs of the induction-coil system and show that, at the demonstrated levels of SQUID performance, it is expected to have poorer performance by a factor of two or more. This disadvantage will be reduced for lower frequency, wider channel width TEM configurations or by improvements in the SQUID devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have