Abstract

Present-day ocean color satellite sensors, which principally provide reliable data on chlorophyll, sediments, and colored dissolved organic material in the open ocean, are not well suited for coastal and inland water studies for a variety of reasons, including coarse spatial and spectral resolution plus challenges with atmospheric correction. National Aeronautics and Space Administration (NASA) airborne mission concepts tested in 2011, 2013, 2017, and 2018 over Monterey Bay, CA, and nearby inland waters have demonstrated the feasibility of improving airborne monitoring and research activities in case-1 and case-2 aquatic ecosystems through the combined use of state-of-the-art above- and in-water measurement capabilities. These competencies have evolved through time to produce a sensor-web approach: imaging spectrometer, microradiometers, and a sun photometer (airborne) with their analogous algorithms, and with corresponding in-water radiometers and ground-based sun photometry. The NASA airborne instrument suite and mission concept demonstrations, leveraging high-quality above- and in-water data, significantly improves the fidelity as well as the spatial and spectral resolution of observations for studying and monitoring water quality in oceanic, coastal, and inland water ecosystems. The goal of this series of projects was to develop and fly a portable airborne sensor suite for NASA science missions focusing on a gradient of water types from oligotrophic to turbid waters addressing the challenges of an optically complex coastal ocean zone and inland waters. The airborne radiometry in this range of aquatic conditions and sites has supported improved results of studies of water quality and biogeochemistry and provides capabilities for research areas such as ocean productivity and biogeochemistry; aquatic impacts of coastal landscape alteration; coastal, estuarine, and inland waters ecosystem productivity; atmospheric correction; and regional climate variability.

Highlights

  • The lack of optimized remote sensing capabilities for coastal and inland waters that can bridge limited spatial coverage and high temporal resolution observations from in-water systems, such as buoys, as well as limited spatial and temporal coverage of ship-based validation with the coarse spatial, temporal, and spectral resolution of satellite data for ocean color products is a significant gap

  • Based on requirements of flights within 30 min of satellite overpass, data from Coastal and Ocean Airborne Science Testbed (COAST), OCEANIA, and C-HARRIER were compared to contemporaneous imagery from the Medium Resolution Imaging Spectrometer (MERIS) sensor, Moderate Resolution Imaging Spectrometer (MODIS), and from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) flown as part of the National Aeronautics and Space Administration (NASA) Hyperspectral Infrared Imager (HyspIRI) Airborne Preparatory Campaign (Hochberg et al, 2015; Lee et al, 2015) (Table 1)

  • A synthetic or predictive dark current (PDC) was developed for each C-AERO radiometer based on a laboratory characterization of the individual microradiometers in each

Read more

Summary

INTRODUCTION

The lack of optimized remote sensing capabilities for coastal and inland waters that can bridge limited spatial coverage and high temporal resolution observations from in-water systems, such as buoys, as well as limited spatial and temporal coverage of ship-based validation with the coarse spatial, temporal, and spectral resolution of satellite data for ocean color products is a significant gap. Aligned sensor technology, site coverage, and data collection contemporaneous with inwater observations enable credible CVR in dynamic coastal and inland aquatic environments To meet these observational and innovative technology needs, next-generation instrument suites, processing, and data products have been tested in coastal and inland waters during several recent airborne missions on the Naval Postgraduate School’s (NPS) Twin Otter (TO): (a) 2011 NASA Coastal and Ocean Airborne Science Testbed (COAST); (b) 2013 NASA Ocean Color Ecosystem Assessments using Novel Instruments and Aircraft (OCEANIA); and (c) the 2017 and 2018 Coastal High Acquisition Rate Radiometers for Innovative Environmental Research (C-HARRIER) campaigns (Table 1). The COAST instrument suite included a portable Headwall Hyperspectral Imaging System (HIS), the new Coastal Airborne In situ Radiometers (C-AIR) bio-optical radiometer package, and the 14-Channel Ames Airborne Tracking Sun (AATS-14) photometer enabling contemporaneous observations

26 October 2018
MATERIALS AND METHODS
RESULTS
DISCUSSION
DATA AVAILABILITY STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call