Abstract

During the COVID-2021 epidemic, a large number of antibiotics were used for clinical treatment in hospitals or daily prevention. Sewage from hospital sewage treatment centers (HSTC) and wastewater treatment plants (WWTP) produced a lot of antibiotic-resistance genes/mobile genetic elements (ARGs/MGEs). In this study, the sewage and bioaerosol in the biochemical tank (BT) of an HSTC and a WWTP were sampled throughout the year. The results showed that the average absolute abundance of sewage in BT of WWTP (BTW-W) was higher than sewage in BT of HSTC (BTW-H). Sewage was an important source of microorganisms and ARGs/MGEs in the air of BT. Microorganisms and MGEs were the factors affecting the differences in ARGs/MGEs. Cytotoxicity experiment proved that the cytotoxicity changed from Grade III to Grade IV with the increase in drug-resistant Escherichia coli concentration. According to the formation mechanism formula, the average generation rate of ARGs/MGEs in BT of HSTC was lower than that in WWTP. The diffusion range of ARGs/MGEs of HSTC was larger than that of WWTP. According to the above results, this study found that when people were far away from BT, the health risk of HSTC caused by the diffusion of bioaerosol was higher than WWTP; When people were close to BT, the health risk of WWTP was higher than HSTC due to the aeration of BT. This study provided a basis for public protection of ARGs. In the future, the elimination of airborne ARGs and crowd protection can be further studied in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call