Abstract

The increased usage of antibiotics over the recent years has been of great concern all over the world. It is estimated that about 100,000 tons to 200,000 tons of antibiotics are being consumed worldwide. This increased consumption of antibiotics is worrisome as this has resulted in their detection in wastewater treatment plants' (WWTPs) effluent due to the inability of WWTP to remove them during treatment processes. The antibiotics may emanate from hospital effluents, surface waters, and sediments around the world. However, the migration of antibiotics to the environment is detrimental to public health since it can lead to antibiotics resistance in both humans and animals which has now been reported to be one of the biggest threats to public health in this twenty-first century. This present review work established from literature the presence, concentrations, and types of antibiotics both in influents and effluents of various waste treatment plants, natural water bodies, and hospital wastewaters from different countries over the past 10years (2010-2019). A total of 78 published articles containing information on the presence of antibiotics in convectional and hospital wastewater and also in surface water were retrieved from scientific databases such as ScienceDirect, Google Scholar, PubMed, and Web of Science. A total of 39 different types of antibiotics from 10 different classes of antibiotics and others were recorded. Among the articles reviewed, the most frequently detected antibiotics are the classes of sulfonamides (sulfamethoxazole) which were present in almost all the WWTPs at concentrations as high as 10-800ng/l in influent and 3600-68,700ng/l in effluent samples. Macrolides (clarithromycin, erythromycin, azithromycin), trimethoprim, quinolones (ofloxacin, ciprofloxacin, norfloxacin), and tetracyclines (tetracycline) were also highly present in all treatment plants. β-Lactam antibiotics were seldom detected which might be due to hydrolysis. Most of the antibiotics present were recorded in Asian countries such as China and Singapore which have occurrence frequency of 6-30% and in European countries such as Greece and Spain with frequencies of about 6-10%. Future researches on the need for development of more reliable and cost-effective technologies for antibiotic removal such as advanced oxidation processes and remediation methods are suggested for more research attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call