Abstract

It is well known that the air-void structure of hardened concrete has substantial effects on the mechanical properties and durability of concrete. In this study, laboratory evaluations were conducted to quantify the effects of air-entraining agent (AEA) and silica fume on the air-void characteristics of wet-mix shotcrete (WMS) before and after shotcreting process. For this purpose, a high-resolution image analyzer capturing elaborate graphical layouts of air-void structure using the linear transverse method was employed. Also, this study examined the effects of air-void characteristics, such as air content and spacing factor, on the strength and permeability of WMS. Based on the findings of this study, it can be concluded that: (1) shotcreting process considerably reduces overall air contents in WMS; (2) incorporating AEA with a 4.5% silica fume replacement ensures both satisfactory spacing factor and good retention of small entrained air bubbles even after shotcreting, which may improve the freeze-thaw and scaling resistance; (3) the compressive and flexural strengths of WMS were reduced as the air content increased and average spacing factor decreased; and (4) the air content affected the permeability of WMS, but no consistent correlation was found between spacing factor and permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call