Abstract

ABSTRACTThe United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. We discovered that air chilling methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. Finally, a techno-economic analysis highlighted potential economic advantages to air chilling compared to water chilling in facility locations where water costs are a more significant factor than energy costs.IMPORTANCE As the poultry industry works to become more sustainable and to reduce the volume of food waste, it is critical to consider points in the processing system that can be altered to make the process more efficient. In this study, we demonstrate that the method used during chilling (air versus water chilling) influences the final product microbial community, quality, and physiochemistry. Notably, the use of air chilling appears to delay the bloom of Pseudomonas spp. that are the primary spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water chilling, producers may extend the time until spoilage of the products and, depending on the cost of water in the area, may have economic and sustainability advantages. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.

Highlights

  • The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process

  • We demonstrate that the method used to chill chicken carcasses impacts the quality, spoilage time, and microbiome of chicken breasts

  • When placed into a phylogenetic tree containing 16S rRNA gene sequences from all Pseudomonas type strains, we reveal significant variation of branches associated with sequences from this genus

Read more

Summary

Introduction

The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. It is common for broiler production systems to reduce the internal temperature of chicken meat from 40°C to 4°C within 1 to 2 h following harvest This step, though critical to maintaining the safety of the product, is time-consuming and requires significant investments in energy and water, depending on the chilling method utilized [4]. These microbial investigations were limited to culture-dependent techniques that focused on just a few microbes, and investigations with more robust sampling methods are warranted

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call