Abstract

In northern Shaanxi, China, the air quality and thermal insulation properties of primary school classrooms should be given more attention due to the relatively low temperatures in the winter, which are significant to the learning processes of students in classrooms. Some sustainable building measures have been designed and constructed to improve the air quality and thermal comfort of classrooms in this region; however, is still unclear how these measures influence air quality and temperature. This study investigated the indoor air quality and thermal environment of a typical primary school classroom in Yulin city, Shaanxi Province, China. The classroom was characterized by sustainable structures, including double-sided corridors and an underground ventilation pipe, for better thermal insulation. By conducting on-site monitoring in the classroom and performing various numerical simulations based on finite element software, the variations in the indoor air quality (carbon dioxide, water vapor concentration) and temperature over time, and under different conditions, were investigated. Moreover, influences (i.e., of corridors, ventilation pipes, window areas, classroom areas, and the number of students) on the air quality and temperature were analyzed. It was proven that double-sided corridors, underground ventilation pipes, and windows with heights/widths equaling 1 could provide energy-efficient and livable building structures for primary school classrooms in the northern Shaanxi region of China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call