Abstract

This paper proposes a method to detect air pollution by applying a hyperspectral imaging algorithm for visible light, near infrared, and far infrared. By assigning hyperspectral information to images from monocular, near infrared, and thermal imaging, principal component analysis is performed on hyperspectral images taken at different times to obtain the solar radiation intensity. The Beer–Lambert law and multivariate regression analysis are used to calculate the PM2.5 and PM10 concentrations during the period, which are compared with the corresponding PM2.5 and PM10 concentrations from the Taiwan Environmental Protection Agency to evaluate the accuracy of this method. This study reveals that the accuracy in the visible light band is higher than the near-infrared and far-infrared bands, and it is also the most convenient band for data acquisition. Therefore, in the future, mobile phone cameras will be able to analyze the PM2.5 and PM10 concentrations at any given time using this algorithm by capturing images to increase the convenience and immediacy of detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.