Abstract

This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM 10 and PM 2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated. Dichotomous samplers were used for sampling PM 2.5 and PM 10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM 2.5 and PM 10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM 2.5 and PM 10. The experimental results indicated that the average concentrations of PM 2.5 and PM 10 were 30.34±17.95 and 36.81±20.45 μg m −3, respectively, in the study area, while the average ratio of PM 2.5/PM 10 was 0.82±0.01. The concentrations of PM 2.5 and PM 10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator ( P<0.05). The concentration of PAHs in PM 2.5 in the study area was 2.2 times higher than in the reference area ( P<0.05). Furthermore, the benzo( a)pyrene concentrations in PM 2.5 and PM 10 were 0.11±0.05 ng m −3 and 0.12±0.06 ng m −3 in the study area, respectively. The benzo( a)pyrene concentrations of PM 2.5 and PM 10 in the study area were 7 and 5.3 times higher than in the reference area ( P<0.05), respectively. The study indicated that the air quality of PM 2.5, PM 10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.