Abstract

Used ventilation air filters have been shown to reduce indoor environmental quality and worker performance and increase symptoms, with effects stronger after reaction of filters with ozone. We analyzed data from the US EPA Building Assessment Survey and Evaluation (BASE) study to determine if ozone and specific filter media have interactive effects on building-related symptoms (BRS). We analyzed a subset of 34 buildings from the BASE study of 100 US office buildings to determine the separate and joint associations of filter medium [polyester/synthetic (PS) or fiberglass (FG)] and outdoor ozone concentration (above/below the median, 67.6 microg/m(3)) with BRS. Using logistic regression models and general estimating equations, we estimated odds ratios (ORs) and 95% confidence intervals for the association of filter medium, ozone, and filter medium x ozone with BRS. Relative to FG + low ozone, PS alone or high ozone alone, were each significantly (P < 0.05) associated only with fatigue/difficulty concentrating (ORs = 1.93 and 1.54, respectively). However, joint exposure to both PS + high ozone, relative to FG + low ozone, had significant associations with lower and upper respiratory, cough, eye, fatigue, and headache BRS (ORs ranged from 2.26 to 5.90). Joint ORs for PS + high ozone for lower and upper respiratory and headache BRS were much greater than multiplicative, with interaction P-values <0.10. Attributable risk proportion (ARP) estimates indicate that removing both risk factors might, given certain assumptions, reduce BRS by 26-62%. These findings suggest possible adverse health consequences from chemical interactions between outdoor ozone and PS filters in buildings. Results need confirmation before recommending changes in building operation. However, if additional research confirms causal relationships, ARP estimates indicate that appropriate filter selection may substantially reduce BRS in buildings, especially in high-ozone areas. The results indicate that a better understanding of how filters interact with their environment is needed. While the mechanism is unknown and these findings need to be replicated, they indicate that the joint risk of BRS from polyester/synthetic filters and outdoor ozone above 67.6 microg/m(3) is much greater than the risk from each alone. These findings suggest potential reductions in BRS from appropriate selection of ventilation filter media or implementing strategies to reduce ozone entrained in building ventilation systems. If the relationships were found to be causal, filter replacement and ozone abatement should be undertaken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.