Abstract
Over the last few years, moving nanovehicles has attracted great interest in the realm of nanotechnology as a particular application of nanoplates. In this paper, the dynamic analysis of a nanoplate under a moving nanoparticle exposed by air drag is presented. The discretized governing equations of a moving nanoparticle problem are obtained through the meshfree finite volume (MFV) method based on Mindlin's plate and Eringen's non-local hypotheses. Besides, the air drag effect is investigated in this paper as an important issue in nano-size rolling resistance force against the nanoparticle movement. Moreover, a new formulation is proposed to approximate the moving nanoparticle force in the MFV framework. To validate the potential applicably of the MFV method to problems in the nanoscale domain in comparing with the exact solution techniques, a comprehensive analysis is carried out. Finally, the air drag effect is investigated by considering spherical nanoparticle radius, nonlocal parameter, relative velocity, temperature, nanoplate length to thickness ratio, and nanoplate length to width ratio. The obtained results clearly reveal that the air drag is a very significant issue and has a great effect on the dynamic behavior of the moving nanoparticles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have