Abstract

Fluoride based lattice is attractive for reducing phonon-induced quenching in rare-earth (RE) based luminescent materials. However, due to the strong affinity betweenRE and oxygen, the synthesis of fluoride-based complexes has to be protected under anhydrous conditions,and many known fluoride bridged RE clusters are unstable in air. Here, by using the "mixed-ligand" strategy a family of fluoride bridged RE clusters is synthesized, namely RE16(μ4-F)6(μ3-F)12(tBuCOO)18[N(CH2CH2O)3]4 (RE = Eu, EuFC-16; RE = Tb, TbFC-16), which are highly stable in air and decomposed thermally only when heating above 435°C. Moreover, both clusters exhibit high photoluminescence quantum yields (PLQYEuFC-16 = 87.7%, PLQYTbFC-16 = 99.0%). Upon warming, EuFC-16 and TbFC-16 displayexcellent structural, thermal, and chroma stability. Thus, EuFC-16 and TbFC-16 have the potential to be used in light-emitting diode (LED) devices, offering many advantages over commercial phosphors. First, both clusters are soluble in UV-curable resin at any mixing rate, and the emission colors can be tuned from magenta, turquoise, willow green, and ivory to pure white if mixing blue phosphor BAM:Eu2+. Second, the clusters are hydrophobic, and the LEDs work well after soaking in water, indicating a good quality for outdoor lighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.